科学研究
报告题目:

Dynamics of an SIS epidemic reaction-diffusion model

报告人:

报告时间:

报告地点:

报告摘要:

报告题目:

Dynamics of an SIS epidemic reaction-diffusion model

报 告 人:

邓铿 教授(University of Louisiana at Lafayette)

报告时间:

2018年06月15日 16:20--17:40

报告地点:

数学院二楼报告厅

报告摘要:

In this talk, we study an SIS reaction-diffusion model with spatially heterogeneous disease transmission and recovery rates. A basic reproduction number $mathcal{R}_0$ is defined for the model. We first prove that there exists a unique endemic equilibrium if $mathcal{R}_0> 1$. We then consider the global attractivity of the disease-free equilibrium and the endemic equilibrium for two cases. We show that the disease-free equilibrium is globally attractive if $mathcal{R}_0le 1$, while the endemic equilibrium is globally attractive if $mathcal{R}_0> 1$.